US 2020/0269140 Al

LOCKSTEP CLIENT-SERVER
ARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application No. 62/811,120, filed Feb. 27,
2019, the entire contents of which are incorporated by
reference herein.

BACKGROUND

[0002] Client applications, particularly games, often send
and receive instructions from a centralized server. For
example, in a gaming application, the player can request that
a server perform a particular action on each client device
currently active in the game. Communication between the
client devices and centralized server is critical to maintain
efficient gameplay. Due to the centralized nature of the game
architecture, the game would go offline when the server goes
offline of otherwise fails. This may result in interrupted
gameplay.

DESCRIPTION OF THE DRAWINGS

[0003] FIG. 1 is a schematic diagram of a first example
lockstep client-server system, in accordance with embodi-
ments of the disclosure.

[0004] FIG. 2 is a schematic diagram of a second example
lockstep client-server system, in accordance with embodi-
ments of the disclosure.

[0005] FIG. 3 is an illustration of an example of a method
of lockstep client-server operations, in accordance with
embodiments of the disclosure.

[0006] FIG. 4 is an illustration of an example of a method
of lockstep client-server replay operations, in accordance
with embodiments of the disclosure.

[0007] FIG. 5 is an illustration of an example of a method
of lockstep client-server recommendation operations, in
accordance with embodiments of the disclosure.

[0008] FIG. 6 is a block diagram of an example computing
device, in accordance with embodiments of the disclosure.

DETAILED DESCRIPTION

[0009] Aspects of the disclosure relate to lockstep client-
server architecture. Specifically, the present disclosure is
directed to systems and methods for running a real-time
multiplayer game (e.g., a mobile game, such as a massively
multiplayer online (“MMO”) game or the like) or other
suitable client application with a server and multiple clients
in synchronized agreement about the state of the game or
other client application.

[0010] For example, a use case for the present invention
may include a client application (“app”) that can host
real-time matches with multiple participants. Each person
may play on their own client device (e.g., a mobile device,
such as a smartphone, a tablet computer, or the like) that is
connected to a server.

[0011] Merely for purposes of illustration and not limita-
tion, a tower-defense game that contains multiplayer battle
matches will be used as an example of such a client
application to assist in describing the present invention.
According to the present illustration, each instance of a
match has a start state, and begins synchronized among the
players. A match has a finite duration. Players are free to

Aug. 27, 2020

choose what inputs (e.g., actions, tasks, etc.) to make and
when to make them, within the rules of the game. The
behavior of the match plays out over time, affected by the
inputs made by the players in real-time. It is expected that
all client devices experience the same match, with the same
sequence of inputs and the same outcome.

[0012] In one embodiment, gameplay may become inter-
rupted if a centralized server controlling the gameplay goes
offline or otherwise experiences an error. Advantageously,
the methods and systems disclosed herein overcome the
above challenges, and others, by maintaining synchronized
applications on each of the client devices and server(s).
[0013] Inoneembodiment, processing logic of a computer
processing device may send, by a server to each of a
plurality of client devices, initializing information at a start
of a task in a client application running on each of the
plurality of client devices. Initializing information may
include setup data that allows each client device and server
to execute identical copies of deterministic applications such
that the same actions may be performed by each of the client
devices and servers at the same time without communication
with each other.

[0014] Processing logic may further receive, by the server,
an input message from one of the plurality of client devices,
wherein the input message is generated from an interaction
with the task in the client application. In one embodiment,
the input message may include a request from a user to
perform the particular task (e.g., a move in a game, an
annotation to a shared document, etc.), as well as an iden-
tifier of the frame (e.g., a graphics or video frame) during
which the task should be performed.

[0015] Processing logic may further generate, by a com-
puter processing device of the server, updated information
for the task in the client application based on the received
input message. For example, in one embodiment, the
updated information may include instructions to perform the
particular task at a particular time (e.g., as indicated by a
frame identifier). In one embodiment, the particular time
may be determined based on a requested time or a time
generated by the server.

[0016] Processing logic may further send, by the server,
the updated information to each of the plurality of client
devices while the task in the client application is running to
maintain synchronism between the server and the plurality
of client devices for the task. Processing logic may further
record a log of each of the actions performed in a particular
task of a client application, such that tasks of applications
may be replayed without replaying a video of the tasks being
performed. In other words, games may be replayed and
displayed by re-executing all actions taken during the game,
without recording the actual gameplay itself. Advanta-
geously, such techniques may result in a much smaller data
file being maintained or otherwise substantially reduced data
storage requirements (e.g., a video/screen capture is not
required to be stored) while allowing all replay features to be
performed (e.g., fast forward, rewind, pause, etc.).

[0017] Although examples of the disclosure may be
described in the context of a mobile video game application,
such examples are for illustrative purposes only. Aspects of
the disclosure may be utilized by any client applications that
use any kind of collaborative environment and/or entities.
For example, aspects of the disclosure may be used by
collaborative editing software, collaborative presentation
software, collaborative viewing software, etc.



